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Abstract

This study investigates the use of Variational Auto-Encoders to build a simulator that ap-
proximates the law of genuine observations. Using both simulated and real data in scenarios
involving counterfactuality, we discuss the general task of evaluating a simulator’s quality, with
a focus on comparisons of statistical properties and predictive performance. While the simulator
built from simulated data shows minor discrepancies, the results with real data reveal more
substantial challenges. Beyond the technical analysis, we reflect on the broader implications of
simulator design, and consider its role in modeling reality.
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buildbuild passingpassing
45

Asher Rubin walks out of the starosta’s home and heads toward the market square. With46

evening, the sky has cleared, and now a million stars are shining, but their light is cold47

and brings down a frost upon the earth, upon Rohatyn. The first of this autumn. Rubin48

pulls his black wool coat tighter around him; tall and thin, he looks like a vertical line.49

(Tokarczuk 2021, I(3))50

1 Introduction51

1.1 Fiction as the original simulation52

One of humanity’s oldest creative endeavors, fiction represents an early form of simulation. It extends53

the imaginative play where children create scenarios, roles, or worlds that are not constrained by54

the rules of reality, that is “childhood pretence” (Carruthers 2002) or “the make-believe games” of55

children (Walton 1993). Through stories, myths, and imagined worlds, humans construct alternative56

realities to explore ideas, express emotions, and reflect on their existence. By presenting hypothetical57

scenarios and posing “what if things had been different” questions (Pearl and Mackenzie 2018, 34),58

fiction empowers individuals to explore alternative histories, draw insights from the experiences of59

others, and engage with possibilities that extend beyond the confines of the physical world. At its core,60

fiction abstracts and reconstructs elements of reality. An author selectively includes, exaggerates, or61

omits aspects of the real world, creating models that serve their artistic or thematic intentions. From62

Homer’s Odyssey (Homère 2000) to speculative tales like Mary Shelley’s Frankenstein (Shelley 1818),63
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fiction mirrors the complexities of human life, enabling readers to engaged with an imagined reality64

that resonates with their own.65

The relationship between fiction and reality has long been a subject of debate. Plato, in his critique66

of art, viewed fiction as a mere imitation of the physical world, itself a flawed reflection of the ideal67

“Forms”. By this reasoning, fiction is a “simulation of a simulation”, twice removed from truth (Platon68

2002, Livre X). Aristotle, by contrast, argued that fiction, through “mimesis”, the imitation of action69

and life, can illuminate universal truths (Aristote 2006, Chapitres 1 à 5). By abstracting from the70

particular, fiction allows exploration of broader patterns and principles.71

Following Aristotle’s perspective, this tradition of creating and interacting with imagined realities72

provides a natural foundation for distinguishing scientific theories from scientificmodels (Barberousse73

and Ludwig 2000) and understanding modern simulations. While they stem from the same drive to74

represent and explore, scientific theories, scientific models and modern simulations introduce a higher75

degree of mathematical rigor. Nevertheless, fiction remains their conceptual ancestor, reminding us76

that the human impulse to model and engage with alternate realities is as old as storytelling itself.77

1.2 From modern simulations to computer simulations78

The concept of modern simulations predates the modern era. Early instances include mechanical79

devices like the Antikythera, a sophisticated analog computer from the 2nd century BCE designed to80

simulate celestial movements (and the MacGuffin chased by Indiana Jones in the 2024 installment of81

the franchise, Solly 2023). The emergence of mathematical models in the works of Galileo and Newton82

introduced a new form of simulation, where equations were used to predict physical phenomena with83

increasing precision. By the 18th century, probabilistic experiments like Buffon’s Needle, designed to84

approximate the number 𝜋 (Aigner and Ziegler 2018, sec. 24), demonstrated the power of simulating85

complex systems. However, the advent of computer simulations, as we understand them today, began86

during World War II with the work of J. von Neumann and S. Ulam (Metropolis and Ulam 1949).87

While studying neutron behavior, they faced a challenge that was too complex for theoretical88

analysis and too hazardous, time-consuming, and costly to investigate experimentally. Fundamental89

properties (e.g., possible events and their probabilities) and basic quantities (e.g., the average distance90

a neutron would travel before colliding with an atomic nucleus, the likelihood of absorption or91

reflection, and energy loss after collisions) were known, but predicting the outcomes of entire event92

sequences was infeasible. To address this challenge, they devised a method of generating random93

sequences step by step using a computer, naming it “Monte Carlo” after the casino, a suggestion94

by N. Metropolis. Statistical analysis of the data produced by repeatedly applying this method95

provided sufficiently accurate solutions to better understand nuclear chain reactions, a crucial aspect96

of designing atomic bombs and later nuclear reactors. This breakthrough marked the birth of modern97

computer simulations.98

Today, computer simulations, henceforth referred to simply as simulations, play a fundamental role99

in applied mathematics. Generally, conducting a simulation involves running a computer program (a100

“simulator”) designed to represent a “system of interest” at a problem-dependent level of abstraction101

(that is, with a specific degree of complexity) and collecting the numerical output for analysis.102

Examples of systems of interest are virtually limitless and highly diverse. They can represent a103

real-world process in a holistic fashion, such as the regular functioning of a person’s heart at rest, or104

the medical trajectories of a cohort of patients undergoing chemotherapy. Alternatively, in a more105

focused fashion, they can consist of a hybrid pipeline that combines an upstream real-world process106

with downstream data processing of intermediary outputs, such as the estimation of peripheral107

oxygen saturation in a healthy patient using a pulse oximeter. Regardless of the context, determining108

the appropriate levels of abstraction and realism is always a significant challenge.109
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Here, we focus on simulations used to evaluate the performance of statistical procedures through110

simulation studies, as discussed by Morris, White, and Crowther (2019) in their excellent tutorial111

on the design and conduct of such studies. The interested reader will find in their work a carefully112

curated list of books on simulation methods in general and articles emphasizing rigor in specific113

aspects of simulation studies. Specifically, we consider scenarios where a statistician, interested in114

a real-world process, has developed an algorithm tailored to learning a particular feature of that115

process from collected data and seeks to assess the algorithm’s performance through simulations.116

Once the simulator is devised, the following process is repeated multiple times. In each iteration,117

typically independently from previous iterations: first, the simulator generates a synthetic data set of118

size 𝑛; second, the algorithm is run on the generated data; third, the algorithm’s output is collected for119

further analysis. After completing these iterations, the next step is to compare the outcome from one120

run to the algorithm’s target. This is made possible by the design of the simulator. Finally, the overall121

performance of the algorithm is assessed by comparing all the results collectively to the algorithm’s122

target. Depending on the task, this evaluation can involve assessing the algorithm’s ability to well123

estimate its target, the validity of the confidence regions it constructs for its target, the algorithm’s124

ability to detect whether its target lies within a specified null domain (using an alternative domain as125

a reference), and more. This list is far from exhaustive. The entire process can be repeated multiple126

times, for example, to assess how the algorithm’s performance depends on 𝑛.127

However, in order to carry out these steps, the statistician must first devise a simulator. This simulator128

should ideally generate synthetic data that resemble the real-world data in a meaningful way, a goal129

that is often difficult to achieve. So, how can one design a realistic simulator, and what does “realistic130

simulator” even mean in this context? These are the central questions we explore in this work.131

1.3 A probabilistic stance132

We adopt a probabilistic framework to model the data collected by observing a real-world process.133

Specifically, the data are represented as a random variable 𝑂𝑛 (𝑂 as in observations) drawn from a134

probability law 𝑃𝑛 (𝑃 as in probability). The law 𝑃𝑛 is assumed to belong to a statistical model ℳ𝑛
135

(ℳ as in model), which is the set of all probability laws on the space 𝒪𝑛 where 𝑂𝑛 takes its values.136

This model incorporates constraints that reflect known properties of the real-world process and,137

where necessary, minimal assumptions about it.138

The superscript 𝑛 indicates an amount of information. For example, in the context of this study, 𝑛139

typically represents the number of elementary observations drawn independently from a law 𝑃 on140

𝒪 and gathered in 𝑂𝑛. In this case, 𝒪𝑛 corresponds to the Cartesian product 𝒪 × ⋯ × 𝒪 (repeated 𝑛141

times) and 𝑃𝑛 to the product law 𝑃⊗𝑛, with 𝑂𝑛 decomposing as (𝑂1, … , 𝑂𝑛)142

The feature of interest is an element of a spaceℱ (e.g., a subset of the real line, or a set of functions). It143

is modeled as the value Ψ(𝑃𝑛) of a functional Ψ ∶ ℳ𝑛 → ℱ evaluated at 𝑃𝑛. The algorithm developed144

to estimate this feature is modeled as a functional 𝒜 ∶ 𝒪𝑛 → ℱ. Training the algorithm involves145

applying 𝒜 to the observed data 𝑂𝑛, resulting in the estimator 𝒜(𝑂𝑛) for the estimand Ψ(𝑃𝑛).146

We emphasize that we address the questions closing Section 1.2 without focusing on the specific147

nature of the functional of interest Ψ: how can one design a realistic simulator, and what does148

“realistic simulator” even mean in this context?149

1.4 Draw me a simulator150

When constructing simulators, there is a spectrum of approaches, varying in complexity and flexibility.151

At one end of the spectrum, simulators are built upon relatively simple parametric models. While152

these models are sometimes more elaborate, they often rely on standard forms or recurring techniques,153
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which streamlines their implementation. This approach is further reinforced by the common practice154

of using models proposed by others. Doing so not only saves effort but also facilitates meaningful155

comparisons between studies, as the same modeling framework is shared.156

Regardless of the model’s simplicity, parametric simulators are inherently limited and unable to cap-157

ture the complexity of real-world processes. The term “unnatural” aptly describes this shortcoming,158

as these models are simplifications that abstract away many intricacies of reality. Even with sophisti-159

cated parametrizations, it is fundamentally impossible for such simulators to convincingly replicate160

the multifaceted interactions and variability inherent in “nature”. Thus, parametric simulators, by161

their very essence, cannot achieve realism.162

At the other end of the spectrum, one can also adopt a nonparametric approach through bootstrapping,163

which involves resampling data directly from the observed dataset. This method bypasses the need to164

specify a parametric model and instead leverages the structure of the real data to generate simulated165

samples.166

Bootstrapping usually refers to a self-starting process that is supposed to continue or grow without167

external input. The term is sometimes attributed to the story where Baron Münchausen pulls himself168

and his horse out of a swamp by his pigtail, not by his bootstraps (Raspe 1866, chap. 4). In France,169

“bootstrap” is sometimes translated as “à la Cyrano”, in reference to the literary hero Cyrano de170

Bergerac, who imagined reaching the moon by standing on a metal plate and repeatedly using a171

magnet to propel himself (Rostand 2005, Act III, Scene 13).172

When dealing with independent and identically distributed (i.i.d.) samples, bootstrapping generates173

data that closely resemble the observed data. However, the origin of the term “bootstrapping” suggests174

a measure of incompleteness hence dissatisfaction, which is fitting in the context of this article.175

Indeed, a bootstrapped simulator can be viewed as both transparent and opaque, depending on the176

perspective. Conditionally on the real data, the simulator’s behavior is transparent, as understanding177

it reduces to understanding the sampling mechanism over the set of indices {1, … , 𝑛}. Unconditionally,178

however, one is again confronted with the limitation of knowledge about 𝑃𝑛, beyond recognizing it179

as an element of ℳ𝑛.180

______________________________________181

/ I am a simulator. Press ENTER to run \182

\ the synthetic experiment. /183

--------------------------------------184

\185

\186

__187

UooU\.'@@@@@@`.188

\__/(@@@@@@@@@@)189

(@@@@@@@@)190

`YY~~~~YY'191

|| ||192

In Le Petit Prince (de Saint-Exupéry 1943), the Little Prince dismisses the pilot’s simple drawings of a193

sheep as unsatisfactory. Instead, he prefers a drawing of a box, imagining the perfect sheep inside.194

/******************************************************************195

* I am a simulator. Press ENTER to run the synthetic experiment. *196

******************************************************************/197

Similarly, in simulations, straightforward simulators often fail to capture the complexity we seek,198

while black-box simulators, though opaque, can sometimes offer greater efficiency. Unlike the Little199
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Prince, however, we are not content with the box alone – we want to look inside, to understand and200

refine the mechanisms driving our simulator.201

1.5 Organization of the article202

In this article, we explore an avenue to build more realistic simulators by using real data and neural203

networks, more specifically, Variational Auto-Encoders (VAEs). To illustrate our approach, we204

focus on a simple example rooted in causal analysis, as the causal framework presents particularly205

interesting challenges.206

Section 2 outlines our objectives and introduces a running example that serves as a unifying thread207

throughout the study. Section 3 provides a concise overview of VAEs, including their formal definition208

and the key ideas behind their training. Section 4 offers an explanation of how VAEs are constructed,209

while Section 5 presents a comprehensive implementation tailored to the running example. Using210

this VAE, Section 6 describes the construction of a simulator designed to approximate the law of211

simulated data and discusses methods for evaluating the simulator’s performance. Section 7 extends212

this approach to a real-world dataset. Finally, Section 8 concludes the article with a literature review,213

a discussion of the challenges encountered, the limitations of the proposed approach, and some214

closing reflections.215

Note that the online version of this article is preferable to the PDF version, as it allows readers to directly216

view the code. Throughout the article, we use a mix of Python (Van Rossum and Drake 2009) and R (R217

Core Team 2020) for implementation, leveraging commonly used libraries in both ecosystems.218

2 Objective219

Suppose that we have observed 𝑂1, … , 𝑂𝑛, 𝑂𝑛+1, … , 𝑂𝑛+𝑛′ drawn independently from 𝑃, with 𝑃 known220

to belong to amodel𝒫 consisting of laws on𝒪. For brevity, wewill use the notation𝑂1∶𝑛 = (𝑂1, … , 𝑂𝑛)221

and 𝑂(𝑛+1)∶(𝑛+𝑛′) = (𝑂𝑛+1, … , 𝑂𝑛+𝑛′).222

Suppose moreover that we are interested in a causal framework where each 𝑂𝑖 is viewed as a piece of223

a complete data 𝑋𝑖 ∈ 𝒳 drawn from a law 𝑄 that lives in a model 𝒬, with 𝑋1, … , 𝑋𝑛, 𝑋𝑛+1, … , 𝑋𝑛+𝑛′224

independent. The piece 𝑂𝑖 is expressed 𝜋(𝑋𝑖), with the function 𝜋 projecting a complete data225

𝑋 ∼ 𝑄 ∈ 𝒬 onto a coarser real-world data 𝑂 = 𝜋(𝑋) ∼ 𝑃 ∈ 𝒫.226

Our objective is twofold. First, we aim to build a generator that approximates 𝑃, that is, an element227

of 𝒫 from which it is possible to sample independent data that exhibit statistical properties similar to228

(or, colloquially, “behave like”) 𝑂1, … , 𝑂𝑛+𝑛′ . In other words, we require that the generator produces229

data whose joint law approximates the law of the observed data, ensuring that the generated samples230

reflect the same underlying structure and dependencies as the real-world observations. Second, we231

require the generator to correspond to the law of 𝜋(𝑋) with 𝑋 drawn from an element of 𝒬.232

We use a running example throughout the document.233
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INFO Running example.

For example, 𝒫 can be the set of all laws on 𝒪 ∶= ({0, 1}2 × ℝ3) × {0, 1} × ℝ such that

𝑂 ∶= (𝑉 ,𝑊 , 𝐴, 𝑌 ) ∼ 𝑃 ∈ 𝒫

satisfies

𝑐 ≤ 𝑃(𝐴 = 1|𝑊 , 𝑉 ), 𝑃(𝐴 = 0|𝑊 , 𝑉 ) ≤ 1 − 𝑐

𝑃-almost surely for some 𝑃-specific constant 𝑐 ∈]0, 1/2], and 𝑌 is 𝑃-integrable.
Moreover, we view 𝑂 as 𝜋(𝑋) with

𝑋 ∶= (𝑉 ,𝑊 , 𝑌 [0], 𝑌 [1], 𝐴) ∈ 𝒳 ∶= ({0, 1}2 × ℝ3) × ℝ × ℝ × {0, 1},
𝜋 ∶ (𝑣 , 𝑤, 𝑦[0], 𝑦[1], 𝑎) ↦ (𝑣, 𝑤, 𝑎, 𝑎𝑦[1] + (1 − 𝑎)𝑦[0]),

and 𝒬 defined as the set of all laws on 𝒳 such that 𝑋 ∼ 𝑄 ∈ 𝒬 satisfies

𝑐′ ≤ 𝑄(𝐴 = 1|𝑊 , 𝑉 ), 𝑄(𝐴 = 0|𝑊 , 𝑉 ) ≤ 1 − 𝑐′

𝑄-almost surely for some 𝑄-specific constant 𝑐′ ∈]0, 1/2], and 𝑌 [0] and 𝑌 [1] are 𝑄-integrable.
We consider (𝑉 ,𝑊 ) as the context in which two possible actions 𝑎 = 0 and 𝑎 = 1would yield
the counterfactual rewards 𝑌 [0] and 𝑌 [1], respectively. One of these actions, 𝐴 ∈ {0, 1}, is
factually carried out, resulting in the factual reward 𝑌 = 𝐴𝑌[1] + (1 −𝐴)𝑌 [0], that is, 𝑌 [1] if
𝐴 = 1 and 𝑌 [0] otherwise. In the causal inference literature, this definition of 𝑌 is referred
to as the consistency assumption.

234

INFO Running example in action.

The Python function simulate defined in the next chunk of code operationalizes drawing
independent data from a law 𝑃 ∈ ℳ.
import numpy as np
import random
from numpy import hstack, zeros, ones

def simulate(n, dimV, dimW):
def expit(x):

return 1 / (1 + np.exp(-x))
p = np.hstack((1/3 * np.ones((n, 1)), 1/2 * np.ones((n, 1))))
V = np.random.binomial(n = 1, p = p)
W = np.random.normal(loc = 0, scale = 1, size = (n, dimW))
WV = np.hstack((W, V))
pAgivenWV = np.clip(expit(0.8 * WV[:, 0]), 1e-2, 1 - 1e-2)
A = np.random.binomial(n = 1, p = pAgivenWV)
meanYgivenAWV = 0.5 * expit(-5 * A * (WV[:, 0] - 1)\

+ 3 * (1 - A) * (WV[:, 1] + 0.5))\
+ 0.5 * expit(WV[:, 2])

Y = np.random.normal(loc = meanYgivenAWV, scale = 1/25, size = n)
dataset = np.vstack((np.transpose(WV), A, Y))
dataset = np.transpose(dataset)
return dataset

235
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Note that justifying the specific choices made while defining the function simulate is unnecessary.236

In the context of this study, we are free from the need for, or aspiration to, a realistic simulation237

scheme. Under the law 𝑃 that simulate samples from, 𝑉 and 𝑊 are independent; 𝑉 consists of two238

independent variables 𝑉1 and 𝑉2 that are drawn from the Bernoulli laws with parameters 1
3 and 1

2 ; 𝑊239

is a standard Gaussian random variable. In addition, given (𝑊 , 𝑉 ), 𝐴 is sampled from the Bernoulli240

law with parameter241

max {0.01,min [0.99, expit(0.8 × 𝑊1)]}

and, given (𝐴,𝑊 , 𝑉 ), 𝑌 is sampled from the Gaussian law with mean242

1
2 expit [−5𝐴 × (𝑊1 − 1) + 3(1 − 𝐴) × (12 + 𝑊2)] +

1
2 expit(𝑊3)

and (small) standard deviation 1
25 . As noted in the introduction, these choices rely on standard forms243

and recurring techniques.244

INFO Running example, cted.

For future use, we sample in the next chunk of code 𝑛 + 𝑛′ = 104 independent observations
from 𝑃. Observations 𝑂1∶𝑛 (gathered in train) will be used for training and observations
𝑂(𝑛+1)∶(𝑛+𝑛′) (gathered in test) will be used for testing.
import random
random.seed(54321)
dimV, dimW = 2, 3
n_train = int(5e3)
train = simulate(n_train, dimV, dimW)
test = simulate(n_train, dimV, dimW)
print("The three first observations in 'train':\n",

" V_1 V_2 W_1 W_2 W_3 A Y\n",
np.around(train[:3, [3, 4, 0, 1, 2, 5, 6]], decimals = 3))

The three first observations in 'train':
V_1 V_2 W_1 W_2 W_3 A Y

[[ 1. 0. 0.568 1.982 -0.314 1. 0.694]
[ 0. 0. -0.117 0.607 0.294 1. 0.82 ]
[ 1. 1. -1.143 -0.71 -0.727 0. 0.279]]
## np.savetxt("data/train.csv", train, delimiter = ",")
## np.savetxt("data/test.csv", test, delimiter = ",")

245

3 VAE in a nutshell246

3.1 Formal definition247

In the context of this article, a Variational Auto-Encoder (VAE) (Kingma and Welling 2014), (Rezende,248

Mohamed, and Wierstra 2014) is an algorithm that, once trained, outputs a generator. The generator249

is the law of a random variable of the form250

Gen
𝜃
(𝑍) (1)

where251
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1. the source of randomness 𝑍 in Equation 1 writes as252

𝑍 ∶= (𝑍 (0), … , 𝑍 (𝑑)) (2)

with 𝑍 (0), … , 𝑍 (𝑑) independently drawn from253

• the uniform law on {1, … , 𝑛} for 𝑍 (0)
254

• the standard normal distribution for 𝑍 (1), … , 𝑍 (𝑑);255

2. the function Gen𝜃 in Equation 1 is an element of a large collection, parametrized by the256

finite-dimensional set Θ, of functions mapping ℝ𝑑+1 to 𝒳.257

Because Gen𝜃(𝑍) belongs to 𝒳, we can evaluate 𝜋 ∘Gen𝜃(𝑍), hence the generator can also be used to258

generate random variables in 𝒪. Figure 1 illustrates the architecture of the VAE used in this study. It259

shows the key components of the model, including the encoder, the latent space, and the decoder,260

along with the flow of information between them.261

Figure 1: Architecture of the simulator. The figure depicts the flow of information through the
encoder, latent space, and decoder components. It emphasizes how the input source of randomness 𝑍
is transformed into a latent representation and then reconstructed as a complete data, 𝑋 = Gen𝜃(𝑍),
which can be mapped to a real-world data 𝑂 = 𝜋(𝑋).

The word “auto-encoder” reflects the nature of the parametric form of each Gen𝜃. We begin with262

a formal presentation in four steps, which is then followed by a discussion of what each step263

implements. Specifically, each Gen𝜃 writes as a composition of four mappings 𝐽𝑛, Enc𝜃1 , 𝐾 and Dec𝜃2264

with 𝜃 ∶= (𝜃1, 𝜃2) ∈ Θ1 × Θ2 = Θ:265

Gen
𝜃

= Dec
𝜃2

∘𝐾 ∘ Enc
𝜃1

∘𝐽𝑛.

Here,266

1. 𝐽𝑛 ∶ {1, … , 𝑛} × ℝ𝑑 → 𝒪 × ℝ𝑑 is such that267

𝐽𝑛(𝑍) = (𝑂𝑖, (𝑍 (1), … , 𝑍 (𝑑)))

with 𝑖 = 𝑍 (0);268

2. Enc𝜃1 ∶ 𝒪 × ℝ𝑑 → ℝ𝑑 × (ℝ∗+)𝑑 × ℝ𝑑 is such that, if Enc𝜃1(𝑜, 𝑧) = (𝜇, 𝜎 , 𝑧′), then269

• 𝑧 = 𝑧′, and270

• Enc𝜃1(𝑜, 𝑧
″) = (𝜇, 𝜎 , 𝑧″) for all 𝑧″ ∈ ℝ𝑑;271
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3. 𝐾 ∶ ℝ𝑑 × (ℝ∗+)𝑑 × ℝ𝑑 → ℝ𝑑 is given by272

𝐾(𝜇, 𝜎 , 𝑧) ∶= 𝜇 + 𝜎 ⊙ 𝑧,

where ⊙ denotes the componentwise product;273

4. Dec𝜃2 maps ℝ𝑑 to 𝒳.274

Conditionally on 𝑂1∶𝑛 and 𝑍, the computation of Gen𝜃(𝑍) is deterministic. The process unfolds in275

four steps:276

1. Sampling and transfer. Compute 𝐽𝑛(𝑍), which involves sampling one observation 𝑂𝑖 uni-277

formly among all genuine observations and transfer (𝑍 (1), … , 𝑍 (𝑑)) unchanged.278

2. Encoding step. Compute Enc𝜃1 ∘𝐽𝑛(𝑍), which encodes 𝑂𝑖 as a vector 𝜇 ∈ ℝ𝑑 and a 𝑑 × 𝑑279

covariance matrix diag(𝜎)2. This step does not modify (𝑍 (1), … , 𝑍 (𝑑)), which is transferred280

unchanged.281

3. Gaussian sampling. Compute 𝐾 ∘ Enc𝜃1 ∘𝐽𝑛(𝑍) by evaluating 𝜇 + 𝜎 ⊙ (𝑍 (1), … , 𝑍 (𝑑)) ∈ ℝ𝑑.282

This amounts to sampling from the Gaussian law with mean 𝜇 and covariance matrix diag(𝜎)2.283

4. Decoding step. Compute Dec𝜃2 ∘𝐾 ∘ Enc𝜃1 ∘𝐽𝑛(𝑍), which maps the encoded version of 𝑂𝑖, that284

is, 𝜇 + 𝜎 ⊙ (𝑍 (1), … , 𝑍 (𝑑)), to an element of 𝒳.285

3.2 Formal training286

Formally, training the VAE involves maximizing the likelihood of 𝑂1∶𝑛 within a parametric model of287

laws by maximizing a lower bound of the likelihood. This process begins with the introduction of a288

working model of mixtures for 𝑃. The working model (undoubtedly flawed) postulates the existence289

of a latent random variable 𝑈 ∈ ℝ𝑑 and a parametric model of tractable conditional densities290

{𝑜 ↦ 𝑝𝜃2(𝑜|𝑢) ∶ 𝑢 ∈ ℝ𝑑, 𝜃2 ∈ Θ2}

such that291

• 𝑈 is drawn from the standard Gaussian law on ℝ𝑑;292

• there exists 𝜃2 ∈ Θ2 such that, given 𝑈, 𝑂 is drawn from 𝑝𝜃2(⋅|𝑈 ).293

Here, tractable densities refer to those that can be easily worked with analytically, while in contrast,294

intractable densities are too complex to handle directly.295

Therefore, the working model (undoubtedly flawed) postulates the existence of 𝜃2 ∈ Θ2 such that 𝑃296

admits the generally intractable density297

𝑜 ↦ ∫𝑝𝜃2(𝑜|𝑢)𝜙𝑑(𝑢)𝑑𝑢

where 𝜙𝑑 denotes the density of the standard Gaussian law on ℝ𝑑. As suggested by the use of the298

parameter 𝜃2, the definition of the conditional densities 𝑝𝜃2(⋅|𝑢) (𝑢 ∈ ℝ𝑑) involves the decoder Dec𝜃2 .299

Since directly maximizing the likelihood of 𝑂1∶𝑛 under the working model is infeasible, a secondary300

parametric model of tractable conditional densities is introduced:301

{𝑢 ↦ 𝑔𝜃1(𝑢|𝑂𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑛, 𝜃1 ∈ Θ1}
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to model the conditional laws of 𝑈 given 𝑂1, given 𝑂2, …, given 𝑂𝑛. Here too, the use of the parameter302

𝜃1 indicates that the definition of the conditional densities 𝑔𝜃1(⋅|𝑂𝑖) (1 ≤ 𝑖 ≤ 𝑛) involves the encoder303

Enc𝜃1.304

Now, by Jensen’s inequality, for any 1 ≤ 𝑖 ≤ 𝑛 and all 𝜃 = (𝜃1, 𝜃2) ∈ Θ,305

log 𝑝𝜃2(𝑂𝑖) = log∫𝑝𝜃2(𝑂𝑖|𝑢)
𝜙𝑑(𝑢)

𝑔𝜃1(𝑢|𝑂𝑖)
𝑔𝜃1(𝑢|𝑂𝑖)𝑑𝑢

≥ ∫ log (𝑝𝜃2(𝑂𝑖|𝑢)
𝜙𝑑(𝑢)

𝑔𝜃1(𝑢|𝑂𝑖)
) 𝑔𝜃1(𝑢|𝑂𝑖)𝑑𝑢

= −KL(𝑔𝜃1(⋅|𝑂𝑖); 𝜙𝑑) + 𝐸𝑈∼𝑔𝜃1(⋅|𝑂𝑖)[log 𝑝𝜃2(𝑂𝑖|𝑈 )] =∶ LB
𝜃
(𝑂𝑖),

(3)

where KL denotes the Kullback-Leibler divergence and 𝑈 in the expectation is drawn from the306

conditional law with density 𝑔𝜃1(⋅|𝑂𝑖). The notation LB is used to indicate that it represents a lower307

bound. Thus, the likelihood of 𝑂1∶𝑛 under 𝜃2 ∈ Θ is lower-bounded by308

𝑛
∑
𝑖=1

LB
𝜃
(𝑂𝑖)

for all 𝜃1 ∈ Θ1. As suggested earlier, training the VAE formally consists of solving309

max
𝜃∈Θ

{
𝑛
∑
𝑖=1

LB
𝜃
(𝑂𝑖)} (4)

rather than solving310

max
𝜃2∈Θ2

{
𝑛
∑
𝑖=1

log 𝑝𝜃2(𝑂𝑖)} .

4 How to build the VAE311

4.1 A formal description312

We implement the classes of encoders and decoders, that is {Enc𝜃1 ∶ 𝜃1 ∈ Θ1} and {Dec𝜃2 ∶ 𝜃2 ∈ Θ2},313

as neural network models. Each encoder Enc𝜃1 and decoder Dec𝜃2 consist of a stack of layers of314

two types: densely-connected and activation layers (linear, 𝑥 ↦ 𝑥; ReLU : 𝑥 ↦ max(0, 𝑥), softmax:315

(𝑥1, 𝑥2) ↦ (𝑒𝑥1 , 𝑒𝑥2)/(𝑒𝑥1 + 𝑒𝑥2)). The neural networks are rather simple in design, but nevertheless316

(moderately) high-dimensional and arguably over-parametrized, as discussed in Section 4.2.317

The model {𝑢 ↦ 𝑔𝜃1(𝑢|𝑂𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑛, 𝜃1 ∈ Θ1} is chosen such that 𝑈 drawn from 𝑔𝜃1(⋅|𝑂𝑖) is a318

Gaussian vector with mean 𝜇𝑖 and covariance matrix diag(𝜎𝑖)2 where Enc𝜃1(𝑂𝑖, ⋅) = (𝜇𝑖, 𝜎𝑖, ⋅), that319

is, when the 𝜃1-specific encoding of 𝑂𝑖 equals (𝜇𝑖, 𝜎𝑖). Remarkably, the left-hand side term in the320

definition of LB𝜃(𝑂𝑖) (Equation 3) is then known in closed form:321

−KL(𝑔𝜃1(⋅|𝑂𝑖); 𝜙𝑑) =
1
2

𝑑
∑
𝑗=1

(1 + log(𝜎2𝑖 )𝑗 − (𝜎2𝑖 )𝑗 − (𝜇2𝑖 )𝑗) , (5)
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where (𝜇2𝑖 )𝑗 and (𝜎2𝑖 )𝑗 are the 𝑗-th components of 𝜇𝑖 ⊙ 𝜇𝑖 and 𝜎𝑖 ⊙ 𝜎𝑖, respectively. This is very322

convenient, because Equation 5 makes estimating the term KL(𝑔𝜃1(⋅|𝑂𝑖); 𝜙𝑑) unnecessary, a task that323

would otherwise introduce more variability in the procedure.324

As for the model {𝑜 ↦ 𝑝𝜃2(𝑜|𝑢) ∶ 𝑢 ∈ ℝ𝑑, 𝜃2 ∈ Θ2}, the only requirement is that it must be chosen in325

such a way that log 𝑝𝜃2(𝑂𝑖|𝑢) be computable for all 1 ≤ 𝑖 ≤ 𝑛, 𝜃2 ∈ Θ2 and 𝑢 ∈ ℝ𝑑. This is not a tall326

order as soon as 𝑂 can be decomposed as a sequence of (e.g., time-ordered) random variables that327

are vectors with categorical, or integer or real entries. Indeed, it then suffices (i) to decompose the328

likelihood accordingly under the form of a product of conditional likelihoods, and (ii) to choose a329

tractable parametric model for each factor in the decomposition. We illustrate the construction of330

{𝑜 ↦ 𝑝𝜃2(𝑜|𝑢) ∶ 𝑢 ∈ ℝ𝑑, 𝜃2 ∈ Θ2} in the context of our running example.331

INFO Running example, cted.

In the context of this example, 𝑂 = (𝑉 ,𝑊 , 𝐴, 𝑌 ) with 𝑉 ∈ {0, 1}2, 𝑊 ∈ ℝ3, 𝐴 ∈ {0, 1} and
𝑌 ∈ ℝ. Since the source of randomness 𝑍 has dimension (𝑑 + 1), 𝑑 must satisfy 𝑑 = 𝑑1 + 3
for some integer 𝑑1 ≥ 1.
Set 𝜃 = (𝜃1, 𝜃2) ∈ Θ, 𝑢 ∈ ℝ𝑑, and let 𝜋 ∘ Dec𝜃2(𝑢) = ( ̃𝑣 , �̃� , �̃�, ̃𝑦) ∈ 𝒪. The conditional
likelihood 𝑝𝜃2(𝑂|𝑢) (of 𝑂 given 𝑈 = 𝑢) equals

𝑝𝜃2(𝑉 ,𝑊 |𝑢) × 𝑝𝜃2(𝐴|𝑊 , 𝑉 , 𝑢) × 𝑝𝜃2(𝑌 |𝐴,𝑊 , 𝑉 , 𝑢)

so it suffices to define the conditional likelihoods 𝑝𝜃2(𝑉 ,𝑊 |𝑢) (of (𝑉 ,𝑊 ) given 𝑈 = 𝑢),
𝑝𝜃2(𝐴|𝑊 , 𝑉 , 𝑢) (of 𝐴 given (𝑊 , 𝑉 ) and 𝑈 = 𝑢) and 𝑝𝜃2(𝑌 |𝐴,𝑊 , 𝑉 , 𝑢) (of 𝑌 given (𝐴,𝑊 , 𝑉 ) and
𝑈 = 𝑢).

• We decide that 𝑉 and 𝑊 are conditionally independent given 𝑈 under 𝑝𝜃2(⋅|𝑢). There-
fore, it suffices to characterize the conditional likelihoods 𝑝𝜃2(𝑉 |𝑢) (of 𝑉 given 𝑈 = 𝑢)
and 𝑝𝜃2(𝑊 |𝑢) (of 𝑊 given 𝑈 = 𝑢).

• We choose 𝑤 ↦ 𝑝𝜃2(𝑤|𝑢) to be the Gaussian density with mean �̃� and identity
covariance matrix.

332
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INFO Running example, cted.

• The description of the conditional law of 𝑉 given 𝑈 = 𝑢 under 𝑝𝜃2(⋅|𝑢) is slightly more
involved. It requires that we give more details on the encoders and decoders.

– Like every encoder, Enc𝜃1 actually maps 𝒪 ×ℝ𝑑 to [ℝ𝑑1 ×{0}3]×[(ℝ∗+)𝑑1 ×{1}3]×ℝ𝑑.
In words, if Enc𝜃1(𝑜, ⋅) = (𝜇, 𝜎 , ⋅), then it necessarily holds that the three last
components of 𝜇 and 𝜎 are 0 and 1, respectively. Therefore the three last
components of the random vector 𝐾 ∘ Enc𝜃1 ∘𝐽𝑛(𝑍) equal 𝑍

(𝑑−2), 𝑍 (𝑑−1), 𝑍 (𝑑),
three independent standard normal random variables.

– To compute Dec𝜃2(𝑢) = ( ̃𝑣 , �̃� , ̃𝑦0, ̃𝑦1, �̃�) ∈ 𝒳, we actually compute �̃� then ̃𝑣, then
( ̃𝑦0, ̃𝑦1, �̃�).

∗ The output �̃� is a 𝜃2-specific deterministic function of the first 𝑑1 compo-
nents of 𝑢.

∗ The output ̃𝑣 is a 𝜃2-specific deterministic function of the (𝑑1 + 2) first
components of 𝑢.
More specifically, two (latent) probabilities �̃�1, �̃�2 are first computed, as
𝜃2-specific deterministic functions of the 𝑑1 first components of 𝑢. Then
̃𝑣1 and ̃𝑣2 are set to 1{Φ(𝑢(𝑑1+1)) ≤ �̃�1} and 1{Φ(𝑢(𝑑1+2)) ≤ �̃�2}, where Φ
denotes the standard normal cumulative distribution function (c.d.f) and
𝑢(𝑑1+1), 𝑢(𝑑1+2) are the (𝑑1 + 1)-th and (𝑑1 + 2)-th components of 𝑢.
For instance, ̃𝑣1 is given the value 1 if Φ(𝑢(𝑑1+1)) ≤ �̃�1 and 0 otherwise.
Note that 1{Φ(𝑍 (𝑑1+1)) ≤ �̃�1} follows the Bernoulli law with parameter �̃�1
because 𝑍 (𝑑1+1) is drawn from the standard normal law.

∗ The output ( ̃𝑦0, ̃𝑦1) is a 𝜃2-specific deterministic function of ( ̃𝑣 , �̃� ) and the
𝑑1 first components of 𝑢.

∗ The output �̃� is a 𝜃2-specific deterministic function of ( ̃𝑣 , �̃� ) and the last
component of 𝑢.
More specifically, a (latent) probability ℎ̃ is first computed, as a 𝜃2-specific
deterministic function of ( ̃𝑣 , �̃� ). Then �̃� is set to 1{Φ(𝑢(𝑑)) ≤ ℎ̃}.
Note that 1{Φ(𝑍 (𝑑)) ≤ ℎ̃} follows the Bernoulli law with parameter ℎ̃ be-
cause 𝑍 (𝑑) is drawn from the standard normal law.

We are now in a position to describe the conditional law of 𝑉 given 𝑈 = 𝑢. We
decide that, conditionally on 𝑈 = 𝑢, under 𝑝𝜃2(⋅|𝑢), 𝑉1 and 𝑉2 are independently
drawn from the Bernoulli laws with parameters �̃�1 and �̃�2. Thus, 𝑝𝜃2(⋅|𝑢) is such that
𝑝𝜃2(𝑣 |𝑢) = [𝑣1�̃�1 + (1 − 𝑣1)(1 − �̃�1)] × [𝑣2�̃�2 + (1 − 𝑣2)(1 − �̃�2)] for 𝑣 = (𝑣1, 𝑣2) ∈ {0, 1}2.

333
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INFO Running example, cted.

• The description of the conditional law of 𝐴 given (𝑊 , 𝑉 ) and 𝑈 = 𝑢 under 𝑝𝜃2(⋅|𝑢)
is similar to that of 𝑉 given 𝑈. We decide that, conditionally on (𝑊 , 𝑉 ) and 𝑈 = 𝑢,
under 𝑝𝜃2(⋅|𝑊 , 𝑉 , 𝑢), 𝐴 follows the Bernoulli law with parameter ℎ̃(𝑉 ,𝑊 ), where
the probability ℎ̃(𝑣 , 𝑤) lies between ℎ̃ and �̄�𝑛 ∶= 1

𝑛 ∑
𝑛
𝑖=1𝐴𝑖 and is given, for any

(𝑣 , 𝑤) ∈ {0, 1}2 × ℝ3, by

ℎ̃(𝑣 , 𝑤) ∶=𝑡(𝑣 , 𝑤)ℎ̃ + [1 − 𝑡(𝑣 , 𝑤)]�̄�𝑛 with
−10 log 𝑡(𝑣 , 𝑤) = − [𝑣1 log �̃�1 + (1 − 𝑣1) log(1 − �̃�1)]

− [𝑣2 log �̃�2 + (1 − 𝑣2) log(1 − �̃�2)]
+ ‖𝑤 − �̃�‖22.

Thus, 𝑝𝜃2(⋅|𝑊 , 𝑉 , 𝑢) is such that 𝑝𝜃2(𝑎|𝑊 , 𝑉 , 𝑢) = 𝑎 ̃ℎ(𝑉 ,𝑊 ) + (1 − 𝑎)(1 − ℎ̃(𝑉 ,𝑊 )) for
𝑎 ∈ {0, 1}.

• Finally, we choose 𝑦 ↦ 𝑝𝜃2(𝑦 |𝐴,𝑊 , 𝑉 , 𝑢) to be the two-regime density given by

𝑝𝜃2(𝑦 |𝐴,𝑊 , 𝑉 , 𝑢) =
1{𝐴 = �̃�}

̃𝑠(𝑊 )
𝜙1 (

𝑦 − ̃𝑦
̃𝑠(𝑊 )

) + 1{𝐴 ≠ �̃�}𝐶−1

where ̃𝑠(𝑤) ∶= 1
√5
‖𝑤 − �̃�‖2 for any 𝑤 ∈ ℝ3 and 𝐶 is the Lebesgue measure of the

support of the marginal law of 𝑌 under 𝑃 (it does not matter if 𝐶 is unknown).
Thus, two cases arise:

– If 𝐴 = �̃�, then 𝑌 is conditionally drawn under 𝑝𝜃2(⋅|𝐴,𝑊 , 𝑉 , 𝑢) from the Gaussian
law with mean ̃𝑦 = 𝑎 ̃𝑦1 + (1 − 𝑎) ̃𝑦0 and variance ̃𝑠(𝑊 )2.

– Otherwise, 𝑌 is conditionally drawn under 𝑝𝜃2(⋅|𝐴,𝑊 , 𝑉 , 𝑢) from the uniform
law on the support of the marginal law of 𝑌 under 𝑃.

Therefore, the conditional likelihood 𝑝𝜃2(𝑌 |𝐴,𝑊 , 𝑉 , 𝑢) bears information only if𝐴 = �̃�
(that is, if the actions 𝐴 and �̃� undertaken when generating 𝑂 = (𝑉 ,𝑊 , 𝐴, 𝑌 ) and
computing Dec𝜃2(𝑢) coincide), which can be interpreted as a necessary condition to
justify the comparison of the rewards 𝑌 and ̃𝑦. Moreover, when 𝐴 = �̃�, the closer
are the contexts 𝑊 and �̃�, the more relevant is the comparison and the larger the
magnitude of 𝑝𝜃2(𝑌 |𝐴,𝑊 , 𝑉 , 𝑢) can be.

334
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INFO Running example, cted.

In summary, the right-hand side term in the definition of LB𝜃(𝑂𝑖) Equation 3 equals, up to a
term that does not depend on 𝜃,

1
2𝐸𝑈∼𝑔𝜃1(⋅|𝑂𝑖)[ − 2 (𝑉1,𝑖 log �̃�1 + (1 − 𝑉1,𝑖) log(1 − �̃�1))

− 2 (𝑉2,𝑖 log �̃�2 + (1 − 𝑉2,𝑖) log(1 − �̃�2))
− ‖𝑊𝑖 − �̃� ‖22
− 2 (𝐴𝑖 log �̃� + (1 − 𝐴𝑖) log[1 − �̃�])

− 1{𝐴𝑖 = �̃�} × (log ̃𝑆(𝑊𝑖)2 +
(𝑌𝑖 − �̃� )2

2 ̃𝑆(𝑊𝑖)2
) ],

(6)

with the notational conventions 𝜋 ∘ Dec𝜃2(𝑈 ) = (�̃� , �̃� , �̃�, �̃� ), 𝑉𝑖 = (𝑉𝑖,1, 𝑉𝑖,2), and where �̃�1,
�̃�2, �̃�, ̃𝑆 are defined like the above latent quantities �̃�1, �̃�2, ℎ̃, ̃𝑠 with 𝑈 substituted for 𝑢. The
expression is easily interpreted: the opposite of Equation 6 is an average risk that measures
- the likelihood of 𝑉𝑖,1 and 𝑉𝑖,2 from the points of view of the Bernoulli laws with parameters
�̃�1 and �̃�2 (first and second terms), - the average proximity between 𝑊𝑖 and �̃� (third term),
- the likelihood of 𝐴𝑖 from the point of view of the Bernoulli law with parameter �̃� (fourth
term), - the average proximity between 𝑌𝑖 and �̃� (fifth term) only if 𝐴𝑖 = �̃� (otherwise, the
comparison would be meaningless).
In other terms, the opposite of Equation 6 can be interpreted as a measure of the average
faithfulness of the reconstruction of 𝑂𝑖 under the form 𝜋 ∘ Dec𝜃2(𝑈 ) with 𝑈 drawn from
𝑔𝜃1(⋅|𝑂𝑖). The larger is Equation 6, the better is the reconstruction of 𝑂𝑖 under the form
𝜋 ∘ Dec𝜃2(𝑈 ) with 𝑈 drawn from 𝑔𝜃1(⋅|𝑂𝑖).
To conclude, note that the conditional laws of 𝑊 and 𝑌, both Gaussian, could easily be
associated with diagonal covariance matrices different from the identity matrix. This
adjustment would be particularly relevant in situations where ‖𝑊 ‖2 and |𝑌 | are typically
not of the same magnitude, with 𝑂 = (𝑉 ,𝑊 , 𝐴, 𝑌 ) drawn from the law 𝑃 of the experiment
of interest. Alternatively, the genuine observations could be pre-processed to ensure that
‖𝑊 ‖2 and |𝑌 | are brought to comparable magnitudes.

335

The hope is that, once the VAE is trained, yielding a parameter ̂𝜃𝑛 = (( ̂𝜃𝑛)1, ( ̂𝜃𝑛)2), the corresponding336

generator Gen ̂𝜃𝑛
produces a synthetic complete data 𝑋 ∈ 𝒳 such that the law of 𝜋(𝑋) ∈ 𝒪 closely337

approximates 𝑃. Naturally, this approximation is closely related to the conditional densities 𝑔( ̂𝜃𝑛)1
(⋅|𝑂𝑖)338

and 𝑝( ̂𝜃𝑛)2
(⋅|𝑢) (1 ≤ 𝑖 ≤ 𝑛, 𝑢 ∈ ℝ).339

For instance, in the context of the running example, if 𝑂 = (𝑉 ,𝑊 , 𝐴, 𝑌 ) = 𝜋 ∘ Gen ̂𝜃𝑛
(𝑍) and if 𝜉 , 𝜁 are340

independently drawn from the centered Gaussian laws with an identity covariance matrix on ℝ3 and341

variance 1 on ℝ, respectively, then (𝑊 + 𝜉 , 𝐴, 𝑌 + 𝜁 ) follows a law that admits the density342

(𝑣 , 𝑤, 𝑎, 𝑦) ↦ ∫𝑝( ̂𝜃𝑛)2
(𝑦 |𝑎, 𝑤, 𝑣 , 𝑢) × 1{𝑎 = �̃�( ̂𝜃𝑛)2

(𝑢)}

× 𝑝( ̂𝜃𝑛)2
(𝑤, 𝑣 |𝑢) (1

𝑛

𝑛
∑
𝑖=1

𝑔( ̂𝜃𝑛)1
(𝑢|𝑂𝑖)) 𝑑𝑢,

where �̃�( ̂𝜃𝑛)2
(𝑢) is defined as the 𝐴-coefficient of 𝜋 ∘ Dec( ̂𝜃𝑛)2

(𝑢).343
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4.2 About the over-parametrization344

In Section 4.1 we acknowledged that the models {Enc𝜃1 ∶ 𝜃1 ∈ Θ1} and {Dec𝜃2 ∶ 𝜃2 ∈ Θ2} are345

over-parametrized in the sense that the dimensions of the parameter set Θ1 × Θ2 is potentially large.346

For instance, the dimension of the model that we build in the next section is 1157. This is a common347

feature of neural networks.348

Our models are also over-parametrized in the sense that they are not identifiable. This is obviously349

the case because of the loss of information that governs the derivation of an observation 𝑂 as a piece350

𝜋(𝑋) of a complete data 𝑋 that we are not given to observe in its entirety.351

INFO Running example, cted.

In particular, in the context of this example, it is well know that we cannot learn from
𝑂1, … , 𝑂𝑛 any feature of the joint law of the counterfactual random variables (𝑌 [0], 𝑌 [1])
that does not reduce to a feature of the marginal laws of 𝑌 [0] or 𝑌 [1], unless we make very
strong assumptions on this joint law (e.g., that 𝑌 [0] and 𝑌 [1] are independent).

352

This is not a source of concern. First, it is generally recognized that the fitting of neural networks353

often benefits from the high dimensionality of the optimization space and the presence of numerous354

equivalently good local optima, resulting in a redundant optimization landscape (Choromanska et355

al. 2015), (Arora, Cohen, and Hazan 2018). Second, our objective is to construct a generator that356

approximates the law 𝑃 of 𝑂1, … , 𝑂𝑛, generating 𝑂 ∈ 𝒪 by first producing 𝑋 ∈ 𝒳 (via Gen𝜃(𝑍)) and357

then providing 𝜋(𝑋). The fact that two different generators Gen𝜃 and Gen𝜃′ can perform equally358

well is not problematic. Identifying one generator Gen𝜃 that performs well is sufficient.359

It is possible to search for generators that satisfy user-supplied constraints, provided these can be360

expressed as a real-valued criterion 𝐹(𝐸[𝒞 (Gen𝜃(𝑍))]). For example, one may wish to construct a361

generator Gen𝜃 such that the components of 𝑋 under law(Gen𝜃) exhibit a pre-specified correlation362

pattern (as demonstrated in the simple example below).363

To focus the optimization procedure on generators that approximately meet these constraints, one can364

modify the original criterion Equation 4 by adding a penalty term. Specifically, given a user-supplied365

hyper-parameter 𝜆 > 0, we can substitute366

max
𝜃∈Θ

{
𝑛
∑
𝑖=1

LB
𝜃
(𝑂𝑖) + 𝜆𝐹(𝐸𝑍∼Unif{1,…,𝑛}⊗𝑁(0,1)⊗𝑑[𝒞 (Gen

𝜃
(𝑍))])} (7)

for Equation 4. From a computational perspective, this adjustment simply involves adding the term367

𝜆𝐹 ( 1
𝑚

𝑚
∑
𝑖=1

𝒞(Gen
𝜃
(𝑍𝑚+𝑖))) (8)

to the expressions within the curly brackets in the definition of 𝑔 in the algorithm described in368

Section 5.5.369
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INFO Running example, cted.

In particular, in the context of this example, we could look for generators Gen𝜃 such
that the correlation of 𝑌 [0] and 𝑌 [1] under law(Gen𝜃(𝑍)) be close to a target correlation
𝑟 ∈]−1, 1[. In that case, we could choose𝒞(Gen𝜃(𝑍)) ∶= (𝑌 [0]𝑌 [1], 𝑌 [0]2, 𝑌 [1]2, 𝑌 [0], 𝑌 [1])
and 𝐹 ∶ (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) ↦ |(𝑎 − 𝑑𝑒)/√(𝑏 − 𝑑2)(𝑐 − 𝑒2) − 𝑟 |.

370

5 Implementation of the VAE in the context of the running example371

We now show how to implement the classes of encoders and decoders, hence of generators, in the372

context of our running example. We will also define other loss functions that are needed to train the373

model.374

We implemented our approach using the TensorFlow package, but also experimented with PyTorch.375

Both frameworks yielded similar results, with no noticeable differences in performance. However,376

we found TensorFlow to be slightly more beginner-friendly, which might make it easier for readers377

new to neural network frameworks to follow our implementation.378

5.1 Implementing the encoder379

The first chunk of code defines a function, namely build_encoder, to build Enc𝜃1 . The pa-380

rameter latent_dim is the Python counterpart of 𝑑1. The parameters nlayers_encoder and381

nneurons_encoder are the numbers of layers and of neurons in each layer, respectively. The382

parameter L will be discussed later.383

Traceback (most recent call last):384

File "/home/runner/micromamba/envs/micromamba/lib/python3.12/site-packages/tensorflow/python/pywrap_tensorflow.py", line 27, in <module>385

import ssl386

File "/home/runner/work/draw_me_a_simulator/draw_me_a_simulator/renv/cache/v5/linux-387

ubuntu-noble/R-4.4/x86_64-pc-linux-gnu/reticulate/1.41.0.1/43239d1c5749802890d904295dbdc4a8/reticulate/python/rpytools/loader.py", line 122, in _find_and_load_hook388

return _run_hook(name, _hook)389

^^^^^^^^^^^^^^^^^^^^^^390

File "/home/runner/work/draw_me_a_simulator/draw_me_a_simulator/renv/cache/v5/linux-391

ubuntu-noble/R-4.4/x86_64-pc-linux-gnu/reticulate/1.41.0.1/43239d1c5749802890d904295dbdc4a8/reticulate/python/rpytools/loader.py", line 96, in _run_hook392

module = hook()393

^^^^^^394

File "/home/runner/work/draw_me_a_simulator/draw_me_a_simulator/renv/cache/v5/linux-395

ubuntu-noble/R-4.4/x86_64-pc-linux-gnu/reticulate/1.41.0.1/43239d1c5749802890d904295dbdc4a8/reticulate/python/rpytools/loader.py", line 120, in _hook396

return _find_and_load(name, import_)397

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^398

File "/home/runner/micromamba/envs/micromamba/lib/python3.12/ssl.py", line 100, in <module>399

import _ssl # if we can't import it, let the error propagate400

^^^^^^^^^^^401

File "/home/runner/work/draw_me_a_simulator/draw_me_a_simulator/renv/cache/v5/linux-402

ubuntu-noble/R-4.4/x86_64-pc-linux-gnu/reticulate/1.41.0.1/43239d1c5749802890d904295dbdc4a8/reticulate/python/rpytools/loader.py", line 122, in _find_and_load_hook403

return _run_hook(name, _hook)404

^^^^^^^^^^^^^^^^^^^^^^405

File "/home/runner/work/draw_me_a_simulator/draw_me_a_simulator/renv/cache/v5/linux-406

ubuntu-noble/R-4.4/x86_64-pc-linux-gnu/reticulate/1.41.0.1/43239d1c5749802890d904295dbdc4a8/reticulate/python/rpytools/loader.py", line 96, in _run_hook407

module = hook()408
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^^^^^^409

File "/home/runner/work/draw_me_a_simulator/draw_me_a_simulator/renv/cache/v5/linux-410

ubuntu-noble/R-4.4/x86_64-pc-linux-gnu/reticulate/1.41.0.1/43239d1c5749802890d904295dbdc4a8/reticulate/python/rpytools/loader.py", line 120, in _hook411

return _find_and_load(name, import_)412

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^413

ImportError: /usr/lib/x86_64-linux-gnu/libcrypto.so.3: version `OPENSSL_3.3.0' not found (required by /home/runner/micromamba/envs/micromamba/lib/python3.12/lib-414

dynload/_ssl.cpython-312-x86_64-linux-gnu.so)415

416

417

Warning: Failed to load ssl module. Continuing without ssl support.418

The code related to encoding is complete.419

5.2 Implementing the decoder420

The first chunk of code defines the component of Dec𝜃2 , namely build_WV_decoder, that generates421

(𝑉 ,𝑊 ) based on 𝑈. It also defines a function, as_sample, that allows to approximately draw from422

a discrete distribution. The parameters nlayers_WV_decoder and nneurons_WV_decoder are the423

numbers of layers and of neurons in each layer, respectively. The parameter L will be discussed later.424

We say that as_sample allows to sample approximately from a discrete distribution since we cannot425

simply draw from it because of the need for this operation to be differentiable with respect to (w.r.t.)426

the parameters of the neural network. Instead, we use the fact that, for 𝛽 > 0 a large constant and 𝑍427

a standard normal random variable, the law of the random variable428

expit(−𝛽(Φ(𝑍) − 𝑝)) (9)

(recall that Φ is the c.d.f. of the standard normal law) is concentrated around {0, 1}, a small neighbor-429

hood of 1 having mass approximately 𝑝 and a small neighborhood of 0 having mass approximately430

(1 − 𝑝). For instance Figure 2 shows the empirical cumulative distribution function of 1000 indepen-431

dent copies of the random variable defined in Equation 9 with 𝛽 = 30 and 𝑝 = 1/3:432

The second chunk of code defines the component of Dec𝜃2 , namely build_Alaw_decoder, that433

generates a conditional law for 𝐴 given (𝑉 ,𝑊 ). The parameters nlayers_Alaw_decoder and434

nneurons_Alaw_decoder are the numbers of layers and of neurons in each layer, respectively. The435

parameter L will be discussed later.436

The third chunk of code defines the component ofDec𝜃2 , namely build_AYaY_decoder, that generates437

the counterfactual outcomes 𝑌 [0] and 𝑌 [1], the action carried out 𝐴 and the corresponding reward438

𝑌. The parameters nlayers_AYaY_decoder and nneurons_AYaY_decoder are the numbers of layers439

and of neurons in each layer, respectively. The parameter L will be discussed later.440

Two comments are in order:441

• Given the counterfactual rewards 𝑌 [0] and 𝑌 [1] (outputs of the layer 'Ya' in build_AYaY_decoder),442

given the approximate action 𝐴♭ (output of the layer 'as_A' in build_AYaY_decoder), the443

actual reward 𝑌 (output of the layer 'Y'in build_AYaY_decoder) is defined as the weighted444

mean445

𝑌 = 𝐴♭𝑌 [1] + (1 − 𝐴♭)𝑌 [0]

with 𝐴♭ close to 0 and 1 (see the above comment on as_sample).446
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Figure 2: Empirical c.d.f. of 1000 independent copies of the random variable defined in Equation 9
with 𝛽 = 30 and 𝑝 = 1/3. The law is close the Bernoulli law with parameter 1

3 .

• The actual action 𝐴 (output of the layer lambda_A in build_AYaY_decoder) is derived from 𝐴♭
447

under the form448

𝐴 =
ReLU (𝐴♭ − 1

2)

𝐴♭ − 1
2

,

assuming that 𝐴♭ never takes on the value 1
2 . By doing so, 𝐴 is (almost everywhere) differen-449

tiable w.r.t. the parameters of the neural network.450

The code related to decoding is complete.451

5.3 Implementing the coarsening functions452

The first chunk of code defines a function used to build the coarsening function 𝜋.453

The next chunk of code defines a function used to extract the conditional probability that 𝐴 = 1454

given 𝑊 (denoted earlier as �̃�).455

5.4 Implementing the generator456

At long last we are in a position to define a function, namely build_generator, whose purpose is457

to build the generator Gen𝜃. The chunk of code also defines the function K which is the Python458

counterpart of 𝐾 introduced in Section 3.1 and Section 4.1.459

5.5 Implementing the loss functions and training algorithm460

The last step of the encoding consists of defining the loss functions and optimization algorithm to461

drive the training of the VAE involved in Equation 6 by solving Equation 7. The definitions of the462

loss functions follow straightforwardly from the equations. As for the optimization algorithm, we463

rely on the minibatch stochastic ascent algorithm presented below:464
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Algorithm 1 Minibatch stochastic gradient ascent training.
Require: number of epochs EPOCH, batch size 𝑚, number of repetitions 𝐿, learning rate 𝛼, expo-

nential decay rates 𝛽1 and 𝛽2 for the 1st and 2nd moments estimates, small constant 𝜖, initial
parameter 𝜃(0) = (𝜃(0)1 , 𝜃(0)2 ) ∈ Θ

1: Initialize 𝐷 ← {𝑂1, … , 𝑂𝑛}
2: Initialize 𝑡 ← 0, first(0) ← 0ℝdim(Θ) , second(0) ← 0ℝdim(Θ)

3: while 𝑡 < EPOCH do
4: Sample uniformly without replacement a minibatch of 𝑚 genuine observations �̃�1, … , �̃�𝑚

from 𝐷
5: Sample a minibatch of 𝑚 × 𝐿 independent sources of randomness

𝑍1,1, … , 𝑍1,𝐿, 𝑍2,1, … , 𝑍2,𝐿, … , 𝑍𝑚,1, … , 𝑍𝑚,𝐿 from (𝒩 (0, 1))⊗𝑑
6: for 𝑖 = 1, ⋯ , 𝑚 do
7: Compute Enc𝜃 (𝑡)1

(�̃�𝑖, 𝑍1,1) = ((𝜇𝑖)(𝑡), (𝜎2𝑖 )(𝑡), 𝑍1,1)
8: for ℓ = 1, ⋯ , 𝐿 do
9: 𝑈𝑖,ℓ ← (𝜇𝑖)(𝑡) + √(𝜎

2
𝑖 )(𝑡) ⊙ (𝑍 (1)

𝑖,ℓ , ⋯ , 𝑍 (𝑑)
𝑖,ℓ )

10: end for
11: end for
12: Update the encoder and decoder by performing one step of stochastic gradient ascent:
13: 𝑔 ← ∇𝜃 {

1
𝑚
∑𝑚

𝑖=1 (−KL(𝑔𝜃1(⋅|�̃�𝑖); 𝜙𝑑) +
1
𝐿
∑𝐿

ℓ=1 log 𝑝𝜃2(�̃�𝑖|𝑈𝑖,ℓ))}|𝜃=𝜃 (𝑡)
14: where, for each 1 ≤ 𝑖 ≤ 𝑚,
15: −KL(𝑔𝜃 (𝑡)1

(⋅|�̃�𝑖); 𝜙𝑑) =
1
2 ∑

𝑑
𝑗=1 (1 + log(𝜎2𝑖 )

(𝑡)
𝑗 − (𝜎2𝑖 )

(𝑡)
𝑗 − [(𝜇𝑖)

(𝑡)
𝑗 ]2)

16: first(𝑡+1) ← 𝛽1first
(𝑡) + (1 − 𝛽1)𝑔

17: second(𝑡+1) ← 𝛽2second
(𝑡) + (1 − 𝛽2)𝑔 ⊙ 𝑔

18: first
(𝑡+1)

← first(𝑡)

1 − 𝛽 𝑡+11

19: ŝecond
(𝑡+1)

← second(𝑡)

1 − 𝛽 𝑡+12

20: 𝜃(𝑡+1) ← 𝜃(𝑡) + 𝛼 first
(𝑡+1)

√ŝecond
(𝑡+1)

+ 𝜖
21:
22: Update 𝑡 ← 𝑡 + 1
23: end while

In our experiments, we set EPOCH = 10,𝑚 = 103, 𝐿 = 8, 𝛼 = 0.01, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−7. The465

value of 𝐿 is chosen to be small for computational efficiency and to help the algorithm avoid getting466

stuck in local minima. The initial parameter 𝜃(0) is drawn randomly as follows: each component467

corresponding to a bias term in a densely-connected layer is set to 0; each component corresponding468

to a kernel coefficient is drawn independently of the others from the Glorot uniform initializer (Glorot469

and Bengio 2010) (that is, from the uniform law on √6/ℓ × [−1, 1] where ℓ is the sum of the number470

of input units in the weight tensor and of the number of output units).471

The next chunk of code defines the loss functions, optimization algorithm, and the VAE class which472

wraps up the implementation. The so-called penalization_loss is the counterpart of Equation 8.473

20



su
bm

itte
d

6 Illustration on simulated data474

In Section 2, in the context of the running example, we define a simulation law 𝑃 and simulated475

from 𝑃 a training data set train and a testing data set test using the function simulate. The two476

independent data sets consist of 𝑛 = 5000 mutually independent realizations 𝑂𝑖 = (𝑉𝑖, 𝑊𝑖, 𝐴𝑖, 𝑌𝑖) ∈ 𝒪.477

We present here how to use train and the VAE coded in Section 5 to learn a function Gen𝜃 so that, if478

𝑍 is sampled as in Equation 2, then Gen𝜃(𝑍) is a random element of 𝒳 and 𝜋 ∘ Gen𝜃(𝑍) is a random479

element of 𝒪 whose law approximates 𝑃.480

6.1 Training the VAE481

By running the next chunk of code, we set the VAE’s configuration.482

The next chunk of code repeatedly generates and initializes a VAE then trains it.483

Because running the chunk is time-consuming, we stored one trained VAE that we considered good484

enough. We explain what we mean by good enough in the next section.485

6.2 A formal view on how to evaluate the quality of the generator486

Suppose that we have built a generator Gen ̂𝜃𝑛
based on the genuine observations 𝑂1, …, 𝑂𝑛 drawn487

from 𝑃. How can we assess how well the generator approximates 𝑃? In other words, how can we488

assess how convincing are synthetic observations drawn from law(Gen𝜃𝑛(𝑍)) in their attempt to look489

like observations drawn from 𝑃?490

We propose three ways to address this question. Each of them uses the genuine observations 𝑂𝑛+1, …,491

𝑂𝑛+𝑛′ that were not used to build Gen ̂𝜃𝑛
and 𝑁 synthetic observations 𝑂♯

1 , …, 𝑂♯
𝑁 drawn independently492

from Gen ̂𝜃𝑛
.493

6.2.1 Criterion 1494

The overly faithful replication (a form of overfitting) by Gen ̂𝜃𝑛
of 𝑂1, …, 𝑂𝑛, the genuine observations495

upon which its construction is based, is a pitfall that we aim to avoid. As a side note, the simplest gen-496

erator that one can build from 𝑂1, …, 𝑂𝑛 is the empirical measure based on them, which corresponds497

to the bootstrap approach (see Section 1.4).498

The first criterion we propose is inspired by a commonly used machine learning metric for comparing499

synthetic images generated by a neural network to the original training images. To assess the potential500

over-faithfulness of the replication process, we suggest comparing two empirical distributions:501

• 𝜇1∶𝑛, the empirical law of the distance to the nearest neighbor within {𝑂♯
1 , … , 𝑂♯

𝑁} of each 𝑂𝑖502

(1 ≤ 𝑖 ≤ 𝑛);503

• 𝜇(𝑛+1)∶(𝑛+𝑛′), the empirical law of the distance to the nearest neighbor within {𝑂♯
1 , … , 𝑂♯

𝑁} of504

each 𝑂𝑛+𝑖 (1 ≤ 𝑖 ≤ 𝑛′).505

Ideally, 𝜇1∶𝑛 and 𝜇(𝑛+1)∶(𝑛+𝑛′) should be similar, indicating that the training and testing performances506

align well. However, if Gen ̂𝜃𝑛
replicates 𝑂1, … , 𝑂𝑛 too faithfully, then 𝜇1∶𝑛 will become very concen-507

trated around 0 while 𝜇(𝑛+1)∶(𝑛+𝑛′) will not exhibit the same behavior. Note that within a bootstrap508

approach, the generator that merely samples uniformly from {𝑂1, … , 𝑂𝑛}would result in a 𝜇1∶𝑛 having509

all its mass at 0 if we let 𝑁 go to infinity, according to the law of large numbers.510
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6.2.2 Criterion 2511

The second criterion involves comparing the marginal distributions of each real-valued component512

of 𝑂 under sampling from 𝑃 and from law(Gen ̂𝜃𝑛
(𝑍)). This comparison can be conducted visually, by513

plotting the empirical distribution functions, or numerically, by computing 𝑝-values of hypotheses514

tests. Depending on the nature of the components of 𝑂, appropriate tests include the binomial,515

multinomial, 𝜒2 or Kolmogorov-Smirnov tests.516

6.2.3 Criterion 3517

The third criterion aims to capture discrepancies between 𝑃 and law(Gen ̂𝜃𝑛
(𝑍)) beyond marginal518

comparisons. To do so in general we propose, for a user-specified collection of prediction algo-519

rithms 𝒜1, … ,𝒜𝐾, to compare their outputs when trained on {𝑂1, … , 𝑂𝑛} versus {𝑂♯
1 , … , 𝑂♯

𝑛}, using520

the predictions they make for each 𝑂𝑛+1, … , 𝑂𝑛+𝑛′ .521

For instance, 𝒜1 could be an algorithm that learns to predict 𝐴 given (𝑉 ,𝑊 ) based on the logistic522

regression model523

{(𝑣 , 𝑤) ↦ 𝑚𝛾(𝑣 , 𝑤) ∶= expit(𝛾 0 + 𝛾 1(𝑣 , 𝑤)) ∶ 𝛾 = (𝛾 0, 𝛾 1) ∈ ℝ × ℝ5}.

Training𝒜1 on {𝑂1, … , 𝑂𝑛} (respectively, {𝑂♯
1 , … , 𝑂♯

𝑛}) yields 𝛾𝑛 (respectively, 𝛾 ♯𝑛 ), hence the predictions524

𝑚𝛾𝑛(𝑉𝑛+𝑖, 𝑊𝑛+𝑖) and𝑚𝛾 ♯𝑛 (𝑉𝑛+𝑖, 𝑊𝑛+𝑖) (1 ≤ 𝑖 ≤ 𝑛). The closerGen ̂𝜃𝑛
approximates 𝑃, the nearer the points525

(𝑚𝛾𝑛(𝑉𝑛+1, 𝑊𝑛+1), 𝑚𝛾 ♯𝑛 (𝑉𝑛+1, 𝑊𝑛+1)), …, (𝑚𝛾𝑛(𝑉𝑛+𝑛′ , 𝑊𝑛+𝑛′), 𝑚𝛾 ♯𝑛 (𝑉𝑛+𝑛′ , 𝑊𝑛+𝑛′)) are to the 𝑦 = 𝑥 line in526

the 𝑥𝑦-plane.527

Importantly, the algorithms need not rely on parametric working models. For instance, 𝒜2 could528

learn to predict 𝐴 given (𝑉 ,𝑊 ) using a nonparametric algorithm such as a random forest.529

6.3 Implementing an evaluation of the quality of the generator530

We now show how to implement the three criteria presented in Section 6.2. The next chunk of code531

loads the data into R: train and test are the R counterparts of the Python objects train and test532

(keeping only the first 1000 observations) and synth is the collection of 1000 synthetic observations533

drawn from the generator associated to the VAE that we stored in Section 6.1. For later use (while534

implementing Criterion 1) we add a dummy column named Z.535

6.3.1 Criterion 1536

The next chunk of code implements the first criterion.537

The two empirical c.d.f. shown in Figure 3 are quite similar, suggesting that 𝜇1∶𝑛 and 𝜇(𝑛+1)∶(𝑛+𝑛′)538

are close. To quantify this proximity, we rely on statistical tests.539

The Directed Acyclic Graph (DAG) in Figure 4 represents the experiment of law Π that consists540

successively of541

• drawing 𝑂1, …, 𝑂𝑛, 𝑂𝑛+1, …, 𝑂𝑛+𝑛′ independently from 𝑃;542

• learning ̂𝜃𝑛;543

• sampling 𝑂♯
1 , …, 𝑂♯

𝑁 independently from law(Gen ̂𝜃𝑛
(𝑍));544

• determining, for each 1 ≤ 𝑖 ≤ 𝑛 + 𝑛′, the nearest neighbor 𝑓 ♯(𝑂𝑖) of 𝑂𝑖 among 𝑂♯
1 , …, 𝑂♯

𝑁.545

The DAG is very useful to unravel how the random variables produced by Π depend on each other. In546

particular, by 𝑑-separation (Lauritzen 1996), we learn from the DAG that the distances to the nearest547
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Figure 3: Empirical c.d.f. of the distance to the nearest neighbor within the synthetic observations of
the training and of the testing data points (logarithmic scale). The two c.d.f. are quite close.

Figure 4: DAG representing how the random variables produced by Π depend on each other.
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neighbor within {𝑂♯
1 , … , 𝑂♯

𝑁} of 𝑂1, …, 𝑂𝑛+𝑛′ are dependent pairwise. This dependency prevents the548

use of a Kolmogorov-Smirnov test to compare 𝜇1∶𝑛 and 𝜇(𝑛+1)∶(𝑛+𝑛′).549

Moreover, conditionally on 𝑂♯
1 , …, 𝑂♯

𝑁,550

• 𝑂1, …, 𝑂𝑛 are not independent (because, for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝑂♯
1 is a collider on the path551

𝑂𝑖 → 𝑂♯
1 ← 𝑂𝑗);552

• 𝑓 ♯(𝑂1), …, 𝑓 ♯(𝑂𝑛+𝑛′) are independent (because, for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 + 𝑛′, all paths leading553

from 𝑓 ♯(𝑂𝑖) to 𝑓 ♯(𝑂𝑗) are blocked);554

• the distances to the nearest neighbor within {𝑂♯
1 , … , 𝑂♯

𝑁} of 𝑂𝑛+1, …, 𝑂𝑛+𝑛′ are mutually inde-555

pendent.556

Therefore, conditionally on 𝑂♯
1 , …, 𝑂♯

𝑁 and 𝜇1∶𝑛, we can use t-tests to compare the three first moments557

of 𝜇(𝑛+1)∶(𝑛+𝑛′) to those of 𝜇1∶𝑛. By the central limit theorem and Slutsky’s lemma (van der Vaart558

1998, Example 2.1 and Lemma 2.8), the tests are asymptotically valid as 𝑛′ goes to infinity.559

The next chunk of code retrieves the 𝑝-values of the three tests using all 1000 synthetic observations.560

# A tibble: 1 x 3561

`1st_moment_test` `2nd_moment_test` `3rd_moment_test`562

<dbl> <dbl> <dbl>563

1 0.00706 0.0178 0.142564

The 𝑝-values from the first two tests are small, but not strikingly so, especially when accounting for565

multiple testing. This indicates only moderate evidence of a discrepancy.566

It is tempting to investigate what happens when only 100 synthetic observations are used.567

# A tibble: 1 x 3568

`1st_moment_test` `2nd_moment_test` `3rd_moment_test`569

<dbl> <dbl> <dbl>570

1 0.156 0.0865 0.0282571

This time, only the 𝑝-value from the third tests is small, but not markedly so when accounting572

for multiple testing. The evidence of a discrepancy is significantly weaker when 100 synthetic573

observations are used compared to 1000. This highlights that distinguishing 𝑁 synthetic observations574

from genuine observations becomes increasingly difficult as 𝑁 decreases.575

6.3.2 Criterion 2576

The next chunk of code implements the second criterion, in its visual form.577

Firstly, inspecting the first row of Figure 5 suggests that the marginal laws of 𝑊1, 𝑊2, 𝑊3 under578

the synthetic law do not align very well with their counterparts under 𝑃, although the locations579

and ranges of the true marginal laws are reasonably well approximated. The restriction to ℝ+ of580

the marginal law of 𝑊1 under the synthetic law is very similar to its counterpart under 𝑃, but its581

restriction to ℝ− is too thin-tailed. As for the marginal laws of 𝑊2, 𝑊3 under the synthetic law, they582

are too thin-tailed compared to their counterparts under 𝑃.583

Secondly, inspecting the second row of Figure 5 reveals that the marginal laws of 𝑉1, 𝑉2 under the584

synthetic law align perfectly (𝑉1) and reasonably well (𝑉2) with their counterparts under 𝑃. However,585

the marginal law of 𝐴 under the synthetic law assigns more weight to the event [𝐴 = 1] than its586

counterpart under 𝑃.587
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Figure 5: Empirical c.d.f. of each covariate based on either the synthetic or the testing data sets.

Lastly, inspecting the third row of Figure 5 reveals that the marginal law of 𝑌 under the synthetic588

law does not align very well with its counterpart under 𝑃. While the location and range of the true589

marginal law are reasonably well approximated, the overall shape of the true density is not faithfully590

reproduced.591

The next chunk of code implements the version of the second criterion based on hypotheses testing.592

Conditionally on the training data set, the testing procedures are valid because (i) the synthetic593

and testing data sets are independent, (ii) the testing data are drawn independently from 𝑃, (iii) the594

synthetic data are drawn independently from law(Gen ̂𝜃𝑛
(𝑍)).595

We first address the continuous covariates (𝑊1, 𝑊2, 𝑊3 and 𝑌) and then the binary covariates (𝑉1, 𝑉2596

and 𝐴). For the former, we use Kolmogorov-Smirnov tests. For the latter, we use exact Fisher tests.597

# A tibble: 4 x 2598

what p.val599

<fct> <dbl>600

1 W[1] 6.06e- 5601

2 W[2] 2.43e-14602

3 W[3] 6.14e-10603

4 Y 2.55e- 7604

# A tibble: 3 x 2605

# Groups: what [3]606

what p.val607

<fct> <dbl>608

1 V[1] 0.924609

2 V[2] 0.117610

3 A 0.000235611

Most 𝑝-values are very small, supporting the conclusions drawn from inspecting Figure 5. Unlike612
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the marginal laws of 𝑉1, 𝑉2, the marginal laws of 𝑊1, 𝑊2, 𝑊3, 𝐴, 𝑌 are not well approximated, as the613

tests detect discrepancies when both the synthetic and testing data sets contain 1000 data points.614

Naturally, one might wonder whether this result still holds when comparing smaller synthetic and615

testing data sets. The following chunk of code reproduces the same statistical analysis as before, but616

now using two samples of 100 data points each.617

# A tibble: 4 x 2618

what p.val619

<fct> <dbl>620

1 W[1] 0.386621

2 W[2] 0.678622

3 W[3] 0.0590623

4 Y 0.921624

# A tibble: 3 x 2625

# Groups: what [3]626

what p.val627

<fct> <dbl>628

1 V[1] 0.0542629

2 V[2] 0.706630

3 A 1631

This time, the 𝑝-values are large, indicating that the tests cannot detect discrepancies when the632

synthetic and testing data sets contain only 100 data points. Surprisingly, the same conclusion holds633

when comparing a synthetic data set of 100 data points with a testing data set of 1000 data points, as634

demonstrated in the next chunk of code.635

# A tibble: 4 x 2636

what p.val637

<fct> <dbl>638

1 W[1] 0.718639

2 W[2] 0.849640

3 W[3] 0.0466641

4 Y 0.677642

# A tibble: 3 x 2643

# Groups: what [3]644

what p.val645

<fct> <dbl>646

1 V[1] 0.568647

2 V[2] 0.592648

3 A 0.601649

In conclusion, while a large synthetic data set can be shown to differ in law from a large testing650

data set, a smaller synthetic data set does not exhibit noticeable differences in marginal laws when651

compared to either a small or a large testing data set.652

6.3.3 Criterion 3653

The next chunk of code builds a super learning algorithm to estimate either the conditional proba-654

bility that 𝐴 = 1 given (𝑊 , 𝑉 ) or the conditional mean of 𝑌 given (𝐴,𝑊 , 𝑉 ) by aggregating 5 base655

learners. We use the SuperLearner package in R. Specifically, the 5 base learners estimate the above656

conditional means by a constant (SL.mean), or based on generalized linear models (SL.glm and657
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SL.glm.interaction), or by a random forest (SL.ranger), or based on a single-hidden-layer neural658

network (SL.nnet).659

We train the super learning algorithm three times: once on each of two distinct halves of the training660

data set, and once on half of the synthetic data set. This results in three estimators of the conditional661

probability that 𝐴 = 1 given (𝑊 , 𝑉 ) and three estimators of the conditional mean of 𝑌 given (𝐴,𝑊 , 𝑉 ).662

The next chunk of code prepares the three training data sets.663

# A tibble: 3 x 3664

type data testing665

<chr> <list> <list>666

1 using training data a <tibble [500 x 7]> <tibble [1,000 x 7]>667

2 using training data b <tibble [500 x 7]> <tibble [1,000 x 7]>668

3 using synthetic data <tibble [500 x 7]> <tibble [1,000 x 7]>669

The following chunk of code trains the super learning algorithm and evaluates the six resulting670

estimators on the testing data points. To compare the estimators, we use scatter plots. Specifically,671

denoting by p̂r1, p̂r2, p̂r3 the estimators of the conditional probability that 𝐴 = 1 given (𝑊 , 𝑉 )672

obtained by training the super learning algorithm on each of the two distinct halves of the training673

data set (p̂r1 and p̂r2), and on half of the synthetic data set (p̂r3), we plot in the left-hand side panel674

{(p̂r1(𝑊𝑛+𝑖, 𝑉𝑛+𝑖), p̂r2(𝑊𝑛+𝑖, 𝑉𝑛+𝑖)) ∶ 1 ≤ 𝑖 ≤ 𝑛} (in red) and {(p̂r1(𝑊𝑛+𝑖, 𝑉𝑛+𝑖), p̂r3(𝑊𝑛+𝑖, 𝑉𝑛+𝑖)) ∶ 1 ≤675

𝑖 ≤ 𝑛} (in blue).676

Therein, the spread of the red scatter plot along the 𝑦 = 𝑥 line in the 𝑥𝑦-plane is an evidence of the677

inherent and irreducible randomness that one faces when one learns the conditional probability that678

𝐴 = 1 given (𝑊 , 𝑉 ). By comparison, the blue scatter plot is more widely spread around the line,679

revealing a measure of discrepancy between the training and synthetic data.680

The right-hand side panel is obtained analogously. The red scatter plot is more concentrated around681

the 𝑦 = 𝑥 line than its counterpart in the left-hand side panel. The blue scatter plot is more widely682

spread than the red one, which again reveals a measure of discrepancy between the training and683

synthetic data. In summary, we consider that the red and blue scatter plots do not strongly differ684

in their bulks. However, it seems that the blue scatter plots feature more outliers than their red685

counterparts, revealing that the estimators may be quite different in some parts of the space of686

covariates.687

6.3.4 Summary688

We implement three criteria to evaluate the synthetic observations. The first criterion compared689

empirical distributions of distances between genuine observations, both involved and not involved690

in the generator’s construction, and synthetic observations, detecting minor over-replication in691

the synthetic data set. The second criterion assessed marginal distributions of individual features,692

revealing discrepancies, particularly in continuous variables, which often exhibited overly thin tails.693

The third criterion compared predictions from an algorithm trained on synthetic versus genuine694

observations, showing good replication for predicting 𝑌 given (𝐴,𝑊 , 𝑉 ) but less so for predicting 𝐴695

given (𝑊 , 𝑉 ). Overall, while the synthetic observations show some discrepancies from the genuine696

ones, these differences are not overly substantial. Moreover, detecting significant differences becomes697

much harder with smaller synthetic datasets (100 versus 1000 synthetic observations).698

7 Illustration on real data699

In this section, we extend the analysis conducted in the previous section to real data. We use a subset of700

the International Warfarin Pharmacogenetics Consortium IWPC data set (The International Warfarin701
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Figure 6: Comparing predicted conditional probabilities that 𝐴 = 1 given (𝑊 , 𝑉 ) (left) or predicted
conditional means of 𝑌 given (𝐴,𝑊 , 𝑉 ) (right) when a super learning algorithm is trained twice on
two distinct halves of the training data set (red points) or on the first half of the training data set,
𝑥-axis, and on half of the synthetic data set, 𝑦-axis (blue points).

Pharmacogenetics Consortium 2009). Warfarin therapy is a commonly prescribed anticoagulant702

employed to treat thrombosis and thromboembolism.703

7.1 The International Warfarin Pharmacogenetics Consortium data set704

In order to limit the number of incomplete observations, we keep only the following variables:705

• height, in centimeters;706

• weight, in kilograms;707

• indicator of whether or not VKORC1 consensus (obtained from genotype data) is “A/A”;708

• indicator of whether or not CYP2C9 consensus (obtained from genotype data) is “*1/*1”;709

• indicator of whether or not ethnicity is Asian;710

• indicator of whether or not therapeutic dose of Warfarin is greater than or equal to 21 mg;711

• international normalized ratio on reported therapeutic dose of Warfarin (INR, a measure of712

blood clotting function).713

The original database includes 3193 patients with complete observations for these variables. We714

refer to the table below for a brief description of the data.715

Let us load the data set into Python.716

It is convenient to rescale the continuous variables.717

We finally define the training and testing data sets.718

The three first observations in 'train':719

V_1 V_2 V_3 W_1 W_2 A Y720

[[1. 0. 0. 0.688 0.515 1. 0.121]721
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Table 1

Variables Descriptive statistics

n (%) or Min Median Mean Max SD
V1 VKORC1 consensus is A/A 1,150 (36%)
V2 CYP2C9 consensus is *1/*1 2,467 (77%)
V3 Ethnicity is Asian 1,087 (34%)
W1 Height (cm) 125 168 168 202 10.9
W2 Weight (kg) 30 73.0 76.9 238 22.0
A Therapeutic dose >= 21 mg per week 2,336 (73%)
Y INR 4 65.3 74.1 680 47.1

[0. 0. 1. 0.584 0.13 0. 0.029]722

[0. 0. 1. 0.402 0.169 0. 0.04 ]]723

7.2 Training the VAE724

By running the next chunk of code, we set the VAE’s configuration.725

The next chunk of code repeatedly generates and initializes a VAE then trains it.726

Because running the chunk is time-consuming, we stored one trained VAE that we considered good727

enough. We now turn to its evaluation based on the three criteria discussed in Section 6.2 and728

Section 6.3.729

7.3 Evaluating the quality of the generator730

The next chunk of code defines in R the counterparts train and test of the Python objects train731

and test (keeping only the first 1000 observations), and synth, the collection of 1000 synthetic732

observations drawn from the generator associated to the VAE that we stored in Section 7.2. For later733

use (while implementing Criterion 1) we add a dummy column named Z.734

7.3.1 Criterion 1735

The next chunk of code implements the first criterion.736

The two empirical c.d.f. shown in Figure 7 are not as similar as those in Figure 3. The next chunk of737

code implements the t-tests comparing the three first moments of 𝜇(𝑛+1)∶(𝑛+𝑛′) to those of 𝜇1∶𝑛.738

# A tibble: 1 x 3739

`1st_moment_test` `2nd_moment_test` `3rd_moment_test`740

<dbl> <dbl> <dbl>741

1 7.59e-13 2.47e-18 8.18e-26742

The numerical evidence of discrepancy is compelling. But is it still as compelling when only 100743

synthetic observations are used? The next chunk of code addresses this question.744

# A tibble: 1 x 3745

`1st_moment_test` `2nd_moment_test` `3rd_moment_test`746

<dbl> <dbl> <dbl>747

1 0.0330 0.0135 0.00313748
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Figure 7: Empirical c.d.f. of the distance to the nearest neighbor within the synthetic observations of
the training and of the testing IWPC data points (logarithmic scale). The two c.d.f. are quite close.

The strength of evidence has dropped considerably, reflected by the larger 𝑝-values compared to749

earlier results. As in Section 6.3, distinguishing 𝑁 synthetic observations from genuine observations750

becomes more challenging when 𝑁 = 100 compared to 𝑁 = 1000.751

7.3.2 Criterion 2752

The next chunk of code implements the second criterion, in its visual form.753

Figure 8 suggests that except for 𝑉2, 𝐴 and, to a lesser extent, 𝑉1, the marginal laws under the754

synthetic law do not align well with their counterparts under 𝑃. This is confirmed by the following755

(Kolmogorov-Smirnov or exact Fisher) hypotheses tests:756

# A tibble: 3 x 2757

what p.val758

<fct> <dbl>759

1 W[1] 1.93e- 25760

2 W[2] 5.53e-180761

3 Y 4.37e- 32762

# A tibble: 4 x 2763

# Groups: what [4]764

what p.val765

<fct> <dbl>766

1 V[1] 1.08e- 3767

2 V[2] 5.99e- 1768

3 V[3] 2.23e-22769

4 A 3.59e- 1770

One might again question whether this result persists when comparing smaller synthetic and testing771

datasets. The next chunk of code replicates the previous statistical analysis, this time using two772
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Figure 8: Empirical c.d.f. of each covariate based on either the synthetic observations or the testing
IPWC data set.

samples of 100 data points each.773

# A tibble: 3 x 2774

what p.val775

<fct> <dbl>776

1 W[1] 0.373777

2 W[2] 0.00184778

3 Y 0.0590779

# A tibble: 4 x 2780

# Groups: what [4]781

what p.val782

<fct> <dbl>783

1 V[1] 1784

2 V[2] 0.596785

3 V[3] 1786

4 A 1787

This time, except for 𝑊2, the 𝑝-values are large, indicating that the tests cannot detect discrepancies788

when the synthetic and testing data sets each contain only 100 data points. As observed in Section 6.3,789

a similar conclusion holds when comparing a synthetic dataset of 100 data points with a testing790

dataset of 1000 data points, with 𝑌 now also associated with a small 𝑝-value. This is demonstrated by791

the next chunk of code.792

# A tibble: 3 x 2793

what p.val794

<fct> <dbl>795

1 W[1] 0.129796

2 W[2] 0.000000179797
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3 Y 0.00730798

# A tibble: 4 x 2799

# Groups: what [4]800

what p.val801

<fct> <dbl>802

1 V[1] 1803

2 V[2] 1804

3 V[3] 0.0830805

4 A 1806

In conclusion, although a large synthetic dataset can be shown to differ in distribution from a large807

testing dataset, a smaller synthetic dataset does not display clear differences in marginal distributions808

(apart from 𝑊3 and potentially 𝑌) when compared to a small testing dataset.809

7.3.3 Criterion 3810

The next chunk of code builds a super learning algorithm to estimate either the conditional probability811

that 𝐴 = 1 given (𝑊 , 𝑉 ) or the conditional mean of 𝑌 given (𝐴,𝑊 , 𝑉 ) by aggregating the same 5 base812

learners as in Section 6.3.813

We train the super learning algorithm three times: once on each of two distinct halves of the training814

data set, and once on half of the synthetic data set. This results in three estimators of the conditional815

probability that 𝐴 = 1 given (𝑊 , 𝑉 ) and three estimators of the conditional mean of 𝑌 given (𝐴,𝑊 , 𝑉 ).816

The next chunk of code prepares the three training data sets.817

# A tibble: 3 x 3818

type data testing819

<chr> <list> <list>820

1 using training data a <tibble [500 x 7]> <tibble [1,000 x 7]>821

2 using training data b <tibble [500 x 7]> <tibble [1,000 x 7]>822

3 using synthetic data <tibble [500 x 7]> <tibble [1,000 x 7]>823

The following chunk of code trains the super learning algorithm and evaluates the six resulting824

estimators on the testing data points. To compare the estimators, we use scatter plots in the same825

manner as in Section 6.3.826

Therein, the spread and asymmetry of the red scatter plot along the 𝑦 = 𝑥 line in the 𝑥𝑦-plane are827

evidences of how difficult it is to estimate the conditional probability that 𝐴 = 1 given (𝑊 , 𝑉 ). To828

ease comparisons, we also superimpose the regression lines obtained by fitting two separate linear829

models on the blue and red data points. By comparison, the blue scatter plot is less widely spread830

than the red one, around the blue line which deviates more from the 𝑦 = 𝑥 line than the red one.831

The right-hand side panel is obtained analogously. The red scatter plot is more concentrated around832

the 𝑦 = 𝑥 line than its counterpart in the left-hand side panel. This indicates that it is less difficult833

to estimate the conditional mean of 𝑌 given (𝐴,𝑊 , 𝑉 ) than the probability that 𝐴 = 1 given (𝑊 , 𝑉 ).834

The blue scatter plot is more widely spread than the red one, which again reveals a measure of835

discrepancy between the training and synthetic data. This is counterbalanced by the fact that the836

blue regression line almost coincides with the 𝑦 = 𝑥 line, whereas the red one deviates from it.837

7.4 Summary838

We implemented the same three criteria as in Section 6.3. Overall, the synthetic observations showed839

more substantial discrepancies from the IWPC (genuine) ones compared to the analysis on simulated840
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Figure 9: Comparing predicted conditional probabilities that 𝐴 = 1 given (𝑊 , 𝑉 ) (left) or predicted
conditional means of 𝑌 given (𝐴,𝑊 , 𝑉 ) (right) when a super learning algorithm is trained twice on
two distinct halves of the training IWPC data set (red points) or on the first half of the training IWPC
data set, 𝑥-axis, and on half of the synthetic data set, 𝑦-axis (blue points).

data. Furthermore, detecting significant differences remained challenging with smaller synthetic841

datasets (100 versus 1000 synthetic observations), but the gaps were more evident in the real-data842

context.843

8 Conclusion844

This final section contextualizes our study by reviewing related works, discussing the challenges845

and limitations encountered, and offering a closing reflection on the broader implications of our846

approach and findings.847

8.1 Related works848

Before the advent of neural networks, synthetic tabular data were typically generated by modeling849

the joint law of genuine tabular data and sampling from it. The parametric models involved canonical850

distributions and were often restricted to low-dimensional settings, due to computational limitations851

and the challenges of effectively encoding large, parameterized classes of functions.852

With the emergence of neural networks, numerous studies have focused on generating synthetic853

data across diverse fields, including image generation (Yi, Walia, and Babyn 2019), video synthesis854

(Vondrick, Pirsiavash, and Torralba 2016), natural language processing (Lee 2018), and healthcare855

(Che et al. 2017), (Choi et al. 2017), (Baowaly et al. 2018), (Lee 2018), (Yi, Walia, and Babyn 2019).856

Most of these studies employed Generative Adversarial Networks (GANs, Goodfellow et al. (2014)),857

for instance (Creswell et al. 2018), (Gui et al. 2023), (Aggarwal, Mittal, and Battineni 2021), (Figueira858

and Vaz 2022), though VAEs and their extensions were also used.859

For instance, Xu et al. (2019) proposed the Conditional Tabular GAN (CTGAN) to address challenges860
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specific to tabular data, such as the mix of discrete and continuous variables, multiple modes in861

continuous variables, and imbalanced discrete variables. Their approach included mode-specific862

normalization, architectural modifications, a conditional generator, and training-by-sampling to863

improve performance. Additionally, they introduced the Tabular Variational Auto-Encoder (TVAE)864

for mixed-type tabular data generation.865

Inspired by a randomized controlled trial (RCT) in the treatment of Human Immunodeficiency Virus866

(HIV), Petrakos, Moodie, and Savy (2025) recently conducted an empirical comparison of several867

strategies and two data generation techniques aimed at generating synthetic tabular RCT data while868

preserving the underlying multivariate data distribution. One of these techniques was based on869

the aforementioned CTGAN, and the other on a more traditional statistical method. Their findings870

indicate that the most effective approach for generating synthetic RCT data involves a sequential871

generation process. This process begins with an R-vine copula model to generate baseline variables,872

followed by a simple random treatment allocation to simulate the RCT environment, and concludes873

with regression models for post-treatment variables, such as the trial outcome.874

In a causal framework, Kocaoglu et al. (2017) proposed an adversarial training procedure to learn875

a causal implicit generative model for a given causal graph. They demonstrated that when the876

generator’s structure aligns with the causal graph, GANs can effectively train causal implicit gener-877

ative models. Their approach involved a two-stage procedure: first, they trained a causal implicit878

generative model over binary labels using a Wasserstein GAN (WGAN, Arjovsky, Chintala, and879

Bottou (2017), Gulrajani et al. (2017)) consistent with the causal graph as the generator. Next, they880

introduced a novel conditional GAN architecture, called CausalGAN, which incorporates an anti-881

labeler network alongside a labeler network in its loss function. They showed that this architecture882

enables sampling from the correct conditional and interventional distributions.883

Works more similar to ours include the following. Athey et al. (2024) proposed using GANs to884

generate synthetic data that mimic genuine data, aimed at assessing the performance of statistical885

methods. To illustrate their approach, they employed WGANs to generate the covariates (𝑉 ,𝑊 )886

conditional on the treatment 𝐴, followed by the outcome variable 𝑌 conditional on 𝐴. The resulting887

synthetic data were used to estimate average treatment effects.888

Neal, Huang, and Raghupathi (2021) presented RealCause, an alternative approach to simulate889

realistic data using neural networks. Unlike our approach, they first sampled (𝑉 ,𝑊 ) directly from890

the genuine data and then generated samples for 𝐴 (conditionally on (𝑊 , 𝑉 )) and 𝑌 (conditionally on891

(𝐴,𝑊 , 𝑉 )).892

Parikh et al. (2022) introduced Credence, a deep generative model-based framework for evaluating893

causal inference methods. A distinctive feature of their approach is its ability to specify ground truth894

for both the form and magnitude of causal effects and confounding bias as functions of covariates.895

Like us, they used a VAE but modeled the joint law of (𝑉 ,𝑊 , 𝐴, 𝑌 ) by decomposing it into the two896

conditional laws of 𝑌 given (𝐴,𝑊 , 𝑉 ) and of (𝑉 ,𝑊 ) given 𝐴, along with the marginal law of 𝐴.897

However, their decomposition of the likelihood differs from ours.898

Naturally, researchers have also focused on evaluating the quality of synthetic data. For instance,899

Algorithm ?? proposed threemetrics (𝛼-precision, 𝛽-recall, authenticity) to assess the fidelity, diversity,900

and generalization performance of data generators. In their work, each sample is individually901

classified as either high-quality or low-quality.902

To conclude, Lu et al. (2024) provided a comprehensive systematic review of studies utilizing machine903

learning models to generate synthetic data, offering a valuable synthesis of the field’s progress and904

challenges.905
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8.2 Challenges and limitations906

The results of our study, while informative, are somewhat disappointing. Increasing the quantity907

of genuine data substantially did not improve the simulator’s performance in this context. This908

is in stark contrast to fields like image generation, where the abundance of inherent regularities909

in visual patterns enables models to learn effectively from larger datasets. In our case, the limited910

improvement may stem from a lack of rich regularities in the genuine data, which constrains the911

simulator’s ability to capture meaningful structures.912

Another challenge lies in the question of sharing the simulator. While it would be appealing to make913

the simulator widely available, doing so raises concerns about the genuine data required to run the914

code. This dependency could potentially compromise the privacy or utility of the original dataset,915

creating additional barriers to adoption.916

It is also worth noting that we deliberately neutralized in this article the VAE’s repeated training917

from random initializations due to the high computational time required. This is telling to the extent918

that the computational cost underscores a practical limitation of the approach: the trade-off between919

feasibility and the potential benefits of repeated and extended training cycles, which might otherwise920

improve the simulator’s performance.921

Looking ahead, addressing some of these limitations requires practical and theoretical advances.922

For instance, future efforts could focus on effectively handling missing data (NA values) within the923

simulation framework. Additionally, establishing general design principles for simulator architectures924

could improve their robustness and adaptability across a variety of datasets and applications.925

8.3 Closing reflection926

As we reflect on the limitations and implications of simulators, it is worth revisiting the paragraph in927

Section 1.4 where we state that parametric simulators “cannot convincingly replicate the multifaceted928

interactions and variability inherent in ‘nature’ ”. The lexical field surrounding “nature” itself warrants929

reflection.930

Historically, the notion of “nature” has evolved significantly. In ancient Greece, philosophers used931

the term “physis”, nowadays often translated as “nature”, to explore the inherent essence or intrinsic932

qualities of things. “Natura”, the Roman adaptation, extended these ideas, while medieval thought933

integrated nature into theological frameworks, portraying it as divine creation.934

Often regarded as a figure of the late Renaissance and an early architect of the Scientific Revolution,935

Bacon emphasized in 1620 the idea of conquering nature, viewing it as an object to be studied,936

understood, and controlled – “for nature is only to be commanded by obeying her” (Bacon 1854).937

During the Enlightenment, the concept of “nature” further shifted, increasingly separating it from938

humanity and framing it as an object of scientific study and exploitation. These developments have939

frequently served as a conceptual tool to justify humanity’s dominion and looting of the non-human940

world.941

In this context, referring to “nature” as something simulations seek to imitate is a testament to the942

evolving notion of “nature,” now encompassing phenomena like human health. This shift should943

be questioned, especially if it follows the Enlightenment logic of treating “nature” as an object to944

be understood, controlled, and exploited. Applying such a framework to humans risks reducing945

individuals to abstract data points or exploitable systems, ignoring their intrinsic complexity and946

moral agency.947

Recognizing these risks invites us to critically examine not only the limitations of simulators but948

also their ethical and philosophical implications. Among these are the challenges posed by a lack of949
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fair representability in the data used to train algorithms, which can perpetuate existing inequities or950

create new ones. Fairness becomes a central issue, particularly when simulations influence decisions951

that affect diverse populations, as the underlying models may not account for all relevant perspectives952

or experiences. Furthermore, the use of advanced simulations can contribute to elitism, as access to953

the expertise and computational resources needed to develop and deploy such systems is far from954

being universal, with numerous countries facing more urgent challenges. Finally, the environmental955

and financial cost of training complex algorithms, particularly those based on generative AI, raises956

questions about sustainability and the trade-offs between progress and resource consumption.957

Fiction has always provided a space to explore hypothetical scenarios that might be impractical,958

impossible, or even unethical in reality. Utopian and dystopian literature, for example, simulates alter-959

native societies to test ideas about governance, morality, and human behavior. Similarly, speculative960

fiction pushes boundaries by imagining futures shaped by scientific and technological advancements.961

In doing so, fiction serves as a conceptual laboratory, allowing its creators and audiences to in-962

vestigate possibilities and their consequences. This creative exploration, which has long shaped963

human understanding, should continue to inform and inspire the design and purpose of computer964

simulations.965
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